Do not miss our special. Click here


Glass Industry News

Advanced Materials: Processing Glass Like a Polymer

, Karlsruher Institut für Technologie (KIT)

KIT Materials Scientists Develop New Forming Technology – Publication in Advanced Materials

 

Glassomer can be milled, turnered, lasered or processed in CNC machines – just like a conventional polymer

 

 

Pure quartz glass is highly transparent and resistant to thermal, physical, and chemical impacts. These are optimum prerequi-sites for use in optics, data technology or medical engineering. For efficient, high-quality machining, however, adequate pro-cesses are lacking. Scientists of Karlsruhe Institute of Technolo-gy (KIT) have developed a forming technology to structure quartz glass like a polymer. This innovation is reported in the journal Advanced Materials.

“It has always been a big challenge to combine highly pure quartz glass and its excellent properties with a simple structuring technol-ogy,” says Dr. Bastian E. Rapp, Head of the NeptunLab interdisci-plinary research group of KIT’s Institute of Microstructure Technolo-gy (IMT). Rapp and his team develop new processes for industrial glass processing. “Instead of heating glass up to 800 °C for form-ing or structuring parts of glass blocks by laser processing or etch-ing, we start with the smallest glass particles,” says the mechanical engineer. The scientists mix glass particles of 40 nanometers in size with a liquid polymer, form the mix like a sponge cake, and harden it to a solid by heating or light exposure. The resulting solid con-sists of glass particles in a matrix at a ratio of 60 to 40 vol%. The polymers act like a bonding agent that retains the glass particles at the right locations and, hence, maintains the shape.

 

 

With Glassomer, glass components similar to that shown above can be produced by cutting. 

 

 

This “Glassomer” can be milled, turned, laser-machined or pro-cessed in CNC machines just like a conventional polymer. “The en-tire range of polymer forming technologies is now opened for glass,” Rapp emphasizes. For fabricating high-performance lenses that are used in smartphones among others, the scientists produce a Glassomer rod, from which the lenses are cut. For highly pure quartz glass, the polymers in the composite have to be removed. For doing so, the lenses are heated in a furnace at 500 to 600 °C and the polymer is burned fully to CO2. To close the resulting gaps in the material, the lenses are sintered at 1300 °C. During this pro-cess, the remaining glass particles are densified to pore-free glass.

 

High-resolution microstruc-tures can be produced by rep-lication.

 

 

This forming technology enables production of highly pure glass materials for any applications, for which only polymers have been suited so far. This opens up new opportunities for the glass pro-cessing industry as well as for the optical industry, microelectron-ics, biotechnology, and medical engineering. “Our process is suited for mass production. Production and use of quartz glass are much cheaper, more sustainable, and more energy-efficient than those of a special polymer,” Rapp explains.   

 

This is the third innovation for the processing of quartz glass that has been developed by NeptunLab on the basis of a liquid glass-polymer mixture. In 2016, the scientists already succeeded in using this mixture for molding. In 2017, they applied the mixture for 3D printing and demonstrate its suitability for additive manufacture. Within the framework of the “NanomatFutur” competition for early-stage researchers, the team was funded with EUR 2.8 million by the Federal Ministry of Education and Research from 2014 to 2018. A spinoff now plans to commercialize Glassomer.

 

 

, Karlsruher Institut für Technologie (KIT)

News material on the Site is copyright and belongs to the Company or to its third party news provider, and all rights are reserved. Any User who accesses such material may do so only for its own personal use, and the use of such material is at the sole risk of the User. Redistribution or other commercial exploitation of such news material is expressly prohibited. Where such news material is provided by a third party, each User agrees to observe and be bound by the specific terms of use applying to such news material. We do not represent or endorse the accuracy or reliability of any of the info contained in any news or external websites referred to in the news.

Should the content or the design of these sites violate third parties rights or legal prescriptions, we kindly ask you to send us a respective message without invoice or cost. We guarantee that passages where the claim is considered as justified will be removed immediately, without any necessity to involve any lawyer into this issue. We will reject any claim caused by submission of a honorary note in this regard without any prior contact and confirmation of the issueby us and we reserve the right ssue counter claim ourselves because of violation of aforesaid conditions.



Info Grid

Glass studies

Updated worldwide glass study 2020

plants.glassglobal.com

Updated hollow glass study 2020

Request more information

Updated float glass study 2020

Request more information

Company Profile



Updated worldwide glass market study 2020 available now for flat, container glass and tableware

We have updated our international studies on flat glass, container glass and tableware for 2020.

This unique software provides a global overview about glass producers and technical details. Easy to use and clear tables summarize information and data about glass makers such as: Glass types: flat glass, container glass, tableware, production capacities in regions and countries, number of furnaces, furnace types, year of construction, glass types and sub-types, products, project information, special news and downloads.

Further databases supplying demoscopic data and import and export data complete the market survey. Based on these data, prepare individual country profiles with information about local production capacities, local market sizes and expected demand in the future.

Request your offer via plants.glassglobal.com.

Updated Hollow glass study 2020

X

Updated Float glass study 2020

X