
VOLUME 85, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 17 JULY 2000
Liquid Limits: Glass Transition and Liquid-Gas Spinodal Boundaries of Metastable Liquids
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The liquid-gas spinodal and the glass transition define ultimate boundaries beyond which substances
cannot exist as (stable or metastable) liquids. The relation between these limits is analyzed via computer
simulations of a model liquid. The results obtained indicate that the liquid-gas spinodal and the glass
transition lines intersect at a finite temperature, implying a glass-gas mechanical instability locus at low
temperatures. The glass transition lines obtained by thermodynamic and dynamic criteria agree very well
with each other.

PACS numbers: 64.70.Pf, 61.20.Lc, 64.60.My, 64.90.+b
Substances can exist in the liquid state beyond equilib-
rium phase boundaries in a metastable state, if nucleation
of the stable phase is avoided. Such metastable liquids are
nevertheless bounded by ultimate limits in the form of the
liquid-gas spinodal and the glass transition locus. The liq-
uid-gas spinodal is a limit of stability, beyond which the
system is mechanically unstable. Although the nature of
the glass transition, in particular the existence of an ideal
glass transition, is still a matter of debate [1], the locus of
glass transition temperatures defines a boundary beyond
which substances transform to an amorphous solid state,
and can no longer exist as liquids. A preliminary report of
investigations concerning the relationship between these
two limits of the liquid state are presented in this Letter.

The immediate motivation for the present study are ob-
servations made in Ref. [2], where a threshold density
r� � 0.89 was identified for a model atomic (monatomic)
liquid, across which the structure of typical local poten-
tial energy minima or “inherent structures” (IS) undergoes
a qualitative change from spatially heterogeneous (below
r�) to homogeneous structures (above r�). At the same
density r�, the pressure P vs density curve for the in-
herent structures goes through a minimum. Two specula-
tions were made in [2], motivated by these observations:
(1) The threshold density r� is (or closely approximates)
the T ! 0 limit of the liquid-gas spinodal locus rs�T �,
and (2) the threshold density r� forms the absolute lower
density limit to glass formation. In the simplest sce-
nario, the glass transition temperature approaches zero as
r ! r� from above. These speculations are tested here
via computer simulations of a model liquid. The results ob-
tained also prove valuable in assessing recent approaches
to studying the glass transition.

The model studied is a binary mixture of 204
type A and 52 type B particles, interacting via the Lennard-
Jones (LJ) potential, with parameters eAB�eAA � 1.5,
eBB�eAA � 0.5, sAB�sAA � 0.8, and sBB�sAA � 0.88,
and mB�mA � 1. This system has been extensively
studied as a model glass former [3–6]. Monte Carlo
(MC) simulations in the restricted ensemble (REMC)
were performed (details below) for eight temperatures
for an average of ten densities, for three different sets
590 0031-9007�00�85(3)�590(4)$15.00
of constraints in each case, to locate the liquid-gas
spinodal locus. Run lengths ranged from 3 3 105

to 1.8 3 106 MC cycles. Molecular dynamics (MD)
simulations (details as in [4]) were performed at seven
densities, r � 1.08, 1.1, 1.125, 1.15, 1.2, 1.25, 1.35, over
a wide range of temperatures (from T � 3.0 to 0.259
for r � 1.08). Run lengths ranged from 2 3 105

for T . 1.0 to 6.2 3 107 time steps (or 1.86 3 105 LJ
time units, or 0.4 ms in argon units). Simulations above
T � 1.0 were typically done at constant temperature
(NVT) and those below T � 1.0 at constant energy.
NVT simulations were also performed for lower densities
(r � 0.55 to 1.05, for T � 1.0 to 0.325) to obtain
isothermal compressibilities, kT .

The liquid-gas spinodal is estimated via restricted
ensemble simulations [7,8], wherein the system is di-
vided into cells and fluctuations in density in each cell
are restricted. Isotherms so obtained display a van der
Waals–type loop, and permit estimation of the spinodal
density from the location of their minima (see [8] for
further details) [9]. The resulting isotherms are displayed
in Fig. 1, along with the P vs r curves for inherent
structures, obtained at two temperatures. The latter
shows that IS properties depend on the starting T , but the
density at the minimum is not significantly altered, and
is r� � 1.08. Finite T isotherms do not show significant
dependence on constraint strength. Spinodal densities
rs�T � obtained from the location of minima along these
isotherms, for each constraint strength, are shown [as
spinodal temperatures Ts�r�] in Fig. 2. Also shown is
r� where the IS pressure is minimum. To confirm the
reliability of the REMC estimates, the spinodal is also
estimated (a) by fitting isotherms (P vs r) by (cubic)
polynomials, and (b) by calculating kT directly in MD
simulations, and locating the density where k21

T vanishes
by polynomial extrapolation. The results are shown in
Fig. 2, which shows that spinodal densities so obtained
agree well with the REMC estimates.

An empirical free energy is constructed next, based on
equilibrium data from MD simulations [5,6,10–12], which
is used both to obtain an independent estimate of the
spinodal, and to obtain a thermodynamic estimate of the
© 2000 The American Physical Society
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FIG. 1. Isotherms from REMC simulations (points connected
with lines). Curves marked “IS:” are pressure vs density curves
for inherent structures, with starting temperatures T � 1.0, 0.5.
Continuous curves labeled Eq. (3) are from the empirical equa-
tion of state described in the text.

glass transition locus. The absolute free energy A�r, T �
of the system at density r at a reference temperature
Tr � 3.0 is first defined in terms of the ideal gas con-
tribution Aid�r, T � and the excess free energy Aex�r, T �
obtained by integrating the pressure from simulations:

A�r, T � � Aid�r, T � 1 Aex�r, T � ,

bAid�r, T � � N�3 lnL 1 lnr 2 1� ,

brAex�r, Tr � � brA0
ex�0, Tr�

1 N
Z r

0

dr0

r0

µ
brP
r0

2 1

∂
,

brA0
ex�0, Tr � � 2ln

N!
NA! NB!

.

(1)

Here, N is the number of particles, b � kBT , L is the
de Broglie wavelength, and A0

ex arises from the mixing
entropy. Aex is fit to a fifth order polynomial in r [13]. Aex
at a desired temperature may be evaluated by integrating
the potential energy, E,

bAex�r, b� � bAex�r, br � 1
Z b

br

E�r, b0�db0 . (2)

As observed in [5,6], the T dependence of E at fixed, high,
density is well described by the form E�r, T � � T3�5, in
agreement with predictions for dense liquids [14]. This
form is not, however, accurate at low densities. In order to
fit data well at low densities while retaining reliability at
high densities, E data for r � 0.55 to 1.35, and tempera-
tures below T � 3.0 are fitted to the form E�r, T ��N �
E0�r� 1 E1�r�TE2�r�. The parameters E0, E1, E2 are fit-
ted to polynomials in r [13]. These fits, which repre-
sent the measured MD data very well, together with the fit
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FIG. 2. Liquid-gas spinodal obtained from REMC simulations,
kT , polynomial fits to isotherms, and the empirical free energy
(“Ts Therm. Int.”). The same curve is also shown shifted in r by
0.08 [“Ts�r 2 0.08� Therm. Int.”]. The glass transition locus
obtained from VFT fits to diffusivity data, and extrapolation
of configurational entropy to zero (“TIG Therm. Int.”). Also
marked (�) is the density r� where inherent structure pressure
is a minimum.

for A0
ex�0, Tr � 3.0�, define an empirical free energy from

which the equation of state and the liquid-gas spinodal
locus rs�T � are obtained via

P�r, T � �
r2

N
≠A�r, T �

≠r

Ç
T
;

≠P
≠r

Ç
r�rs�T�

� 0 . (3)

The liquid-gas spinodal locus resulting from the em-
pirical free energy is shown in Fig. 2 and is seen to
occur at lower densities than the REMC estimate, with a
roughly constant shift in density (also shown in Fig. 2).
Inspection of isotherms obtained from the empirical free
energy (which show mean field behavior near the spinodal)
reveals that while they agree very well with simulation
isotherms away from the spinodal, they show deviations
very close to the (REMC) spinodal densities. Correspond-
ingly k21

T obtained in simulations drops faster to zero close
to the spinodal, while at higher densities there is very good
agreement. The estimate from the empirical free energy
must thus be considered a lower limit to the location of
the spinodal.

Glass transition temperatures at the seven studied den-
sities are obtained next, by fitting diffusion coefficients
of A particles to the Vogel-Fulcher-Tammann-Hesse
(VFT) form

D�r, T � � Do�r� exp

µ
A�r�

T 2 T0�r�

∂
. (4)

Values of T0�r� so estimated define lower limits to the
laboratory glass transition Tg. The diffusion coefficients
and the corresponding VFT fits are shown in Fig. 3. The
resulting glass transition temperatures T0�r� are shown
in Fig. 2. (Relaxation times yield very similar estimates.
591
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A qualitatively similar Tg vs. r curve has recently been
reported in [15].)

A thermodynamic estimate of ideal glass transition
temperatures is obtained next, by evaluating the con-
figurational entropy of the liquid as a function of density
and temperature. A number of studies in recent years
592
[5,6,10–12,16–21] have focused on evaluating the con-
figurational entropy [22]. The approach here, based on
analyzing inherent structures [23], follows most closely
those of Refs. [5,6,19,20]. The canonical partition func-
tion is rewritten as a sum over all local potential energy
minima, which introduces a distribution function for the
number of minima at a given energy,
QN �r, T � � L23N 1
NA! NB!

Z
drN exp�2bF� �

X
a

exp�2bFa�L23N
Z

Va

drN exp�2b�F 2 Fa��

�
Z

dFa V�Fa� exp�2b�Fa 1 Nfbasin�Fa , T ��	 �
Z

dFa exp�2b�Fa 1 Nfbasin�Fa , T � 2 TSc�Fa��	 ,

(5)

where F is the total potential energy of the system,
a indexes individual inherent structures, Fa is the
potential energy at the minimum, V�Fa� is the number
density of inherent structures with energy Fa , and the
configurational entropy Sc � kB lnV. The basin free
energy fbasin�Fa , T � is obtained by a restricted partition
function sum over a given inherent structure basin, Va . In
the harmonic approximation, we have

bfbasin �
3
2

ln

µ
b

2p

∂
1

1
2N

3N23X
i

lnli � bftherm

1 bfvib , (6)

where li are eigenvalues of the Hessian or curvature matrix
at the minimum. bfvib is a slowly varying function of tem-
perature (the temperature dependence is obtained by aver-
aging over 1000, 100 inherent structures at T , 1, T .

1, respectively), and is fitted to the form bfvib�r, T � �
f0�r� 1 f1�r��T2 which fits available data quite well.
Polynomial fits to r-dependent parameters f0, f1 are ob-
tained [13]. The total entropy of the liquid S as well as
the basin entropy Sbasin may be evaluated as a function of
density and temperature from the total and basin free en-
ergies. The configurational entropy Sc�r, T � and the ideal
glass transition TIG�r� are then given by

Sc�r, T � � S�r, T � 2 Sbasin�r, T � ;

Sc�r, TIG�r�� � 0 .
(7)

The ideal glass transition locus obtained is shown in Fig. 2,
and is seen to be in very good agreement with the estimate
based on diffusivity. Although such correlation is recorded
for experimental data [24], it is noteworthy that T0 esti-
mates here from dynamic data at quite high T produce
such agreement. This agreement offers mutual support to
the thermodynamic method followed here, and the fea-
sibility of estimation based on dynamical measurements.
TIG�r � 1.2� � 0.2976 is in very good agreement with
the values 0.297 in [5] and 0.31 in [6]. Diffusion coeffi-
cients plotted against �TSc�21 (inset of Fig. 3) show that
the Adam-Gibbs expectation [22] lnD � �TSc�21 is ex-
tremely well satisfied at all densities [11,12,24].

Data in Fig. 2 clearly indicate that the liquid-gas
spinodal and glass transition loci would intersect at a
finite temperature Ti � 0.16 (based on REMC data;
Ti � 0.12 based on the empirical free energy). As this
intersection happens at r � r� � 1.08, the data do not
support the speculation that as T ! 0, rs�T � ! r� or
rIG�T � ! r�. On the other hand, r� does (within the
uncertainty of the data) form the lower limiting density for
glass formation. Experimental data (see, e.g., [25]) for the
P dependence of Tg indicate that Tg�P� typically intersects
the zero pressure axis, implying glass-gas coexistence
and finite Tg at negative pressures, a possibility implicit
in [2] and also noted in [19]. However, intersection of
the liquid-gas spinodal and the glass transition locus at
a finite temperature observed here further implies an
ideal glass-gas mechanical instability below Ti . Indirect
evidence for this exists in the form of experimental Tg�P�
loci displaying a negative slope [25], but systematic
evidence requires vitrification experiments at negative
pressures [26].

A proper study of such a mechanical instability is
beyond the scope of the present work, as it requires
calculation of limits of stability accounting consistently
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FIG. 3. Arrhenius plot of diffusion coefficients and the cor-
responding VFT fits for the seven densities studied. (inset)
Adam-Gibbs plot of diffusion coefficients against �TSc�21 and
straight line fits.
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FIG. 4. Pressure vs density for T � 0.05 in the ideal glass
phase (solid line), which exhibits a minimum at r � 1. Exten-
sion of the liquid’s equation of state is shown for comparison
(dashed line). Inset shows pressure vs temperature across the
ideal glass transition for r � 1.2 (solid line).

for the presence of the three relevant phases (liquid, gas,
glass). As a preliminary attempt, the equation of state of
the glass below TIG�r� is obtained by noting that below
TIG the system is trapped in the potential energy basin
reached at TIG . Details of such a calculation will not be
presented here: Instead, two consequences are presented
in Fig. 4. The inset demonstrates the slope discontinuity
of the pressure at fixed density at TIG for r � 1.2. The
main diagram shows the isotherm at T � 0.05 for the glass
phase, which displays a mechanical instability density of
r � 1, where the slope vanishes or kT diverges.

An interesting by-product of the present analysis is the
estimation of configurational entropy as a function of both
energy and density, and a range of temperature depen-
dences of dynamical quantities displaying a variable de-
gree of fragility [27]. These data permit an evaluation of
the relationship between fragility and configurational en-
tropy [28], and will be presented elsewhere.
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