OKALUX K Light Diffusing Insulating Glass

The challenge for OKALUX K Light Diffusing Insulating Glass: to make daylight useful. With the use of a translucent light diffusing capillary slab both sides covered with additional glass fibre tissues in the cavity, OKALUX K achieves

- optimum, uniform light transmittance into the room, irrespective of irradiation conditions
- light transmission and total solar energy transmittance as required
- good colour rendering index
- very good heat insulation
- UV protection as required
- sound insulation as required
- vision protection and glare protection
- attractive appearance in daylight and in artificial light
- bird friendly glazing

Physical properties

Thermal insulation

The capillaries reduce the heat transfer in the cavity between panes in terms of convection and heat radiation.

The Ug value for the various versions is dependent, among other things, on:

- the functional coating on surface #2
- the outer cavity between panes (8, 10 or 12 mm)
- the filling gas in the cavity (Air/Argon/Krypton)
- the thickness of the capillary slab

The Ug value of insulating glass in accordance with DIN EN 673 or DIN EN 674 always relates to vertical installation. If the insulating glass is at an angle, e.g. as in roof glazing, the Ug value increases, because the rising convection level in the cavity. Insulating glass with a standard value of Ug = 1.1 W/(m²K) has an actual value of approx. 1.7 W/(m²K) if used for horizontal roof glazing.

The capillary slab in the cavity between panes prevents convection, which means that the Ug value of OKALUX K is nearly constant whatever the installation position.
Sound insulation
Capillary slabs decouple the panes of the insulating glazing and provide improved sound insulation.

Spectral properties
The special light diffusing properties of the OKAPANE insert provide an optimized, uniform distribution of light in the room, regardless of irradiation conditions.

The g value and light transmission depend on:
- the design of the light-scattering inserts
- the functional coating on surface #2

A low-e coating or a combined sun-control and low-e coating at position 2 changes the colour appearance when viewed from outside.

The g value and the light transmission are dependent on the make-up of the light diffusing inserts. Other g values and light transmission values can be provided on request with the use of special make-ups.

UV protection
Very low UV transmission possible on request.
Technical values of standard types
The type designation for the following list is comprised of light transmission, \(g \) value and \(U_g \) value \((W/(m^2\cdot K))\) in the standard version with glass thicknesses of 6/4/4, an outer cavity between panes of 12 mm and an 8 mm capillary slab in the inner cavity between panes.

<table>
<thead>
<tr>
<th>OKALUX K Type</th>
<th>(T_v) direct %</th>
<th>(T_v) diffuse %</th>
<th>TSET %</th>
<th>(U_g) ([W/(m^2\cdot K)]) / (U_g) ([Btu/(hr ft^2 \cdot ^\circ F)])</th>
</tr>
</thead>
<tbody>
<tr>
<td>42/36</td>
<td>42</td>
<td>31</td>
<td>36</td>
<td>(0.8/0.14) / (1.0/0.18) / (1.2/0.21)</td>
</tr>
<tr>
<td>37/32</td>
<td>37</td>
<td>26</td>
<td>32</td>
<td>(0.8/0.14) / (1.0/0.18) / (1.2/0.21)</td>
</tr>
<tr>
<td>37/23</td>
<td>37</td>
<td>27</td>
<td>23</td>
<td>(0.8/0.14) / (1.0/0.18) / (1.2/0.21)</td>
</tr>
<tr>
<td>33/21</td>
<td>33</td>
<td>23</td>
<td>21</td>
<td>(0.8/0.14) / (1.0/0.18) / (1.2/0.21)</td>
</tr>
<tr>
<td>32/30</td>
<td>32</td>
<td>22</td>
<td>30</td>
<td>(0.8/0.14) / (1.0/0.18) / (1.2/0.21)</td>
</tr>
<tr>
<td>32/21</td>
<td>32</td>
<td>23</td>
<td>21</td>
<td>(0.8/0.14) / (1.0/0.18) / (1.2/0.21)</td>
</tr>
<tr>
<td>28/19</td>
<td>28</td>
<td>20</td>
<td>19</td>
<td>(0.8/0.14) / (1.0/0.18) / (1.2/0.21)</td>
</tr>
<tr>
<td>28/19</td>
<td>28</td>
<td>19</td>
<td>19</td>
<td>(0.8/0.14) / (1.0/0.18) / (1.2/0.21)</td>
</tr>
<tr>
<td>28/28</td>
<td>28</td>
<td>19</td>
<td>28</td>
<td>(0.8/0.14) / (1.0/0.18) / (1.2/0.21)</td>
</tr>
<tr>
<td>24/26</td>
<td>24</td>
<td>17</td>
<td>26</td>
<td>(0.8/0.14) / (1.0/0.18) / (1.2/0.21)</td>
</tr>
<tr>
<td>24/18</td>
<td>24</td>
<td>17</td>
<td>18</td>
<td>(0.8/0.14) / (1.0/0.18) / (1.2/0.21)</td>
</tr>
<tr>
<td>21/24</td>
<td>21</td>
<td>15</td>
<td>24</td>
<td>(0.8/0.14) / (1.0/0.18) / (1.2/0.21)</td>
</tr>
<tr>
<td>21/16</td>
<td>21</td>
<td>14</td>
<td>16</td>
<td>(0.8/0.14) / (1.0/0.18) / (1.2/0.21)</td>
</tr>
<tr>
<td>19/15</td>
<td>19</td>
<td>13</td>
<td>15</td>
<td>(0.8/0.14) / (1.0/0.18) / (1.2/0.21)</td>
</tr>
<tr>
<td>16/14</td>
<td>16</td>
<td>11</td>
<td>14</td>
<td>(0.8/0.14) / (1.0/0.18) / (1.2/0.21)</td>
</tr>
</tbody>
</table>

Legend and related values:
- **Unit**
 - \(U_g \): W/m\(^2\)K
 - TSET: %
 - \(T_v \): %
 - \(R_w \): dB
 - \(F_c \): %
 - \(SC \): %

- **Standard**
 - DIN EN 673
 - DIN EN 674
 - DIN EN 410
 - DIN EN 20140
 - DIN 4108
 - GANA Manual

- **Technical term**
 - Thermal transmittance
 - Total solar energy transmittance or solar heat gain coefficient
 - Light transmission (direct/hemispheric resp. diffuse/hemispheric)
 - Sound reduction coefficient
 - Reduction factor of a solar control system, \(F_c = \frac{TSET}{TSET_{reference}} \)
 - Shading coefficient, \(SC = \frac{TSET}{0.86} \)

The above data are approximate data. They are based on measurements of approved test institutes and calculations derived from these measurements. Values determined on a project-specific basis may vary from the above values.

Direct transmission relates to direct incidence of light, generally vertical (model situation for direct sunlight). Diffuse transmission applies to homogeneous, diffuse incidence of light from the outer hemisphere (model situation for an overcast sky).

A low-e coating or a combined sun-control and low-e coating at position 2 changes the colour appearance when viewed from outside.

The specified values may change as a result of technical developments. No guarantee is therefore given for their correctness.
Make-up
What makes OKALUX K light diffusing insulating glass so special is the capillary slab inserted in the cavity between the panes. The glass type and thickness vary according to static requirements and design requirements.

Standard make-up:
- Outer pane with functional coating
 - Outer cavity between panes 8 - 12 mm with gas filling
- Intermediate pane
 - additional glass fibre tissues
 - Capillary slab 8 mm
 - additional glass fibre tissues
- Inner pane

Variations in the density of the capillary slab and the diameters of the capillaries may be visible, as can joints which are necessary for production reasons. Under certain light conditions it may also be possible that fine lines, also the result of the production process, can be seen within the capillary slab. The physical characteristics of OKALUX are not adversely affected by the above.

Dimensions

larger glass dimension	up to 4500 mm	no restrictions
smaller glass dimension	smaller than 1500 mm	no restrictions
	1500 mm to 2000 mm	light transmission not more than 32 %
	larger than 2000 mm	subdivision by joint with aluminium profile

For tolerance reasons and due to differing temperature expansion, the insert may exhibit an expansion gap of up to 2.0 mm on each side. This can lead to a visible gap between the insert and the spacer bar. For this reason, the edge cover must amount to at least the required overall seal width plus 5 mm or be covered using an edge screen print (spacer bar + secondary bar).

In the case of a polysulphide as secondary seal, it may be necessary to use a exceed cover in order to provide sufficient UV protection. In the case of a frameless glazing system, it is generally recommended that the edge areas are covered using a screen print. Depending on loading, the required sealant width can be considerably greater than that of “conventional” insulating glazing.

Planning instructions
Builder-owners and architects must be able to technically assess the effect of glazing in daylight terms. Okalux offers such calculations as a voluntary extra service without obligation. The daylight-relevant properties of the room to be examined must be known; in particular, these are:

- room geometry, window dimensions
- approximate degree of reflection of the surfaces forming the room boundaries
The so-called daylight quotient (D) in accordance with DIN 5034, Part 3, is relevant for the evaluation of the ambient daylight. This gives the ratio between the horizontal luminous intensity indoors and out of doors, under a completely overcast sky. This value can be calculated for different glazing variants using the existing simulation tools. The customer can thus assess the light-directing effects of special products, in comparison with normal glazing as well. In addition to the assessment in accordance with DIN, virtual images can visualise the light distribution in the rooms.

Installation instructions

OKALUX K light diffusing insulating glass is used for glazing like normal insulating glass. For instructions and recommendations for the installation of our insulating glazing, please refer to our information and instructions for customers contained in "Delivery of OKALUX Glass Products" and "General Information on Glazing".

Other printed matter

If you do not have the following printer matter, please request it directly from OKALUX or download it from the Internet at www.okalux.com:

- General terms and conditions of business
- Product-specific information texts

As well as these, there are the following customer notes:

- Customer notes on offers
- Customer notes on delivery
- Customer notes alarm glass
- Customer notes screen printing
- Customer notes Structural Glazing / Edge deletion
- Customer notes on heat-soak test
- Customer notes on glazing
- Customer notes SIGNAPUR®
- Customer notes installation of OKAFLEX
- Customer notes installation of OKAPANE
- Customer notes OKAWOOD tolerances
- Customer notes OKACELL product specification
- Cleaning instructions for OKALUX gen.
- Cleaning instructions OKACOLOR
- Guideline for visual quality